Advanced Programming Techniques

Tasks of a model exam

Task 1: Definitions and Terms

(b) (4P) Explain the difference between static and dynamic polymorphism and state by which
two concepts they are realized in C

(¢) (2P) Given is the function fct which takes a pointer to a double and a const reference to
a std: :list as input and returns no value.
Using the std::function library type, define the variable f and initialize it with fct.




Task 2: Programming with the Standard Library

Please note: The questions assume that all necessary header fies from the Standard Library are
included and an implicit using namespace std;. Likewise, you can safely assume the same for
your code!

Your task is to implement the function

template<typename T>
1list<T> eraseDuplicates(const 1ist<T> & input)

e this function should return alist consisting only of unique elements of the passed list input
e preserving the order of the input list is not important
e vou can assume that instances of T can be compared for equality
Example usage:
list<string> 1 = {uau , nen R npn , nan ,
Ilbll , Ilbll s "all ,
nen , "C"};
auto res = eraseDuplicates(l);

res.sort();
for(const auto & e : res)
cout << e << endl;

Expected output of above snippet:

a
b
c



Task 3: Vector Class
Consider the following implementation of a Vector class:

class Vector {
private:
int size_;
double * data_;

public:
Vector (int size) : size_(size), data_(new double[size]) {}

“Vector () { delete [] data_ }

Vector& operator=(const Vector & o ) {
this->data_ = o.data_;
this->size_ = o.size_;

(a) (1P) List the three aspects of C+ +'s “Rule of Three".

(b) (2P) Explain why is the current assignemnt operator wrong in terms of the Rule of Three
in the current (unmodified) Vector class.

(c) (6P) Fix and extend the Vector class, to make it comply to the “Rule of Three”. All added
functionality has to work correctly for vectors with different sizes.

(d) (6P) Extend the Vector class such that the following code compiles and correctly prints
the vector elements 0 and 1 to stdout.

void printVector (const Vector & v) {
for(auto it = v.begin(); it != v.end(); ++it)
std::cout << *it << std::endl;

int main() {
Vector v(2);
v(0) = 0;
v(1) = 1;

printVector (v);

return 0;



